Capturing Global Transactions from Multiple Recovery
Log Files in a Partitioned Database System

Chengfei Liu*
University of South Australia
Adelaide, SA 5095, Australia

liu@cs.unisa. edu. au
Serge Bourbonnais

Elizabeth B. Hamel

Bruce G. Lindsay
IBM Almaden Research Center
San Jose, CA 95120, USA
bgl@almaden.ibm.com
Tuong C. Truong

IBM Silicon Valley Laboratory
San Jose, CA 95141, USA
{bourbon, hameleb, tctruong} @Qus.ibm.com
Jens Stankiewitz
Viterra Informationssyeme GmbH
44803 Bochum, Germany
jens.stankiewitzQuiterra. com

Abstract

DB2 DataPropagator is one of the IBM’s so-
lutions for asynchronous replication of rela-
tional data by two separate programs Cap-
ture and Apply. The Capture program cap-
tures changes made to source data from re-
covery log files into staging tables, while the
Apply program applies the changes from the
staging tables to target data. Currently
the Capture program only supports captur-
ing changes made by local transactions in a
single database log file. With the increas-
ing deployment of partitioned database sys-
tems in OLTP environments, there is a need
to replicate the operational data from the par-
titioned systems. This paper introduces a
system called CaptureEEE which extends the
Capture program to capture global transac-
tions executed on partitioned databases sup-
ported by DB2 Enterprise-Extended Edition.
The architecture and the components of Cap-

* Work done while the author was visiting IBM Silicon Val-
ley Laboratory.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

tureEEE are presented. The algorithm for
merging log entries from multiple recovery log
files is discussed in detail.

1 Introduction

Data replication is a process of maintaining a de-
fined set of data in more than one location. It in-
volves copying designated changes from a source lo-
cation to a target location, and synchronizing the
data in both locations. Update propagation can
be done within or outside the transaction bound-
aries. This classifies the data replication proto-
cols into two categories: synchronous (eager) and
asynchronous (lazy) [8]. The conventional correct-
ness criterion for synchronous replication is 1-copy-
serializability [4]. Synchronous approach allows up-
date propagation completed before the transaction
commits, thus provides data consistency in a straight-
forward manner. However, the resulting communi-
cation overhead increases response time significantly.
The asynchronous approach, on the other hand, de-
lays the update propagation until after the transac-
tion completes. The update propagation is normally
implemented as a background process. This approach
increases response time, but may cause inconsistency
since copies are allowed to diverge.

The dangers of synchronous replication have been
analyzed by Gray et al. [8], and since then the research
efforts have been shifted towards asynchronous repli-
cation [6, 14, 3, 5]. Recently efforts have been made to
shorten the response time by using group communica-

tion primitives in synchronous approach [12, 11, 2].

Many commercial database systems are based on
asynchronous replication model [10, 7]. Two strate-
gies have been used in asynchronous approach: push
and pull. The push strategy propagates the updates
immediately after the commit of a transaction, while
pull strategy propagates the updates at the client re-
quest.

DB2 DataPropagator is one of the IBM’s asyn-
chronous replication solutions for relational data. It
adopts the pull strategy. In DB2 DataPropagator, the
task of replication is divided into two separate pro-
grams: Capture and Apply. The Capture program
captures the data changes from the log files of source
database to staging tables, and the Apply program ap-
plies the data changes from the staging tables to the
target database. A control center helps users to config-
ure their replication tasks by defining the data source,
target and specific requirements.

Current version of the Capture only captures
changes made by local transactions in a single database
log file. There is no support to the IBM partitioned
database system DB2 Enterprise-Extended Edition
(DB2 EEE) [9]. With the increasing deployment of
partitioned database systems in OLTP environments,
more operational data are being stored in the parti-
tioned database systems. This increases the need for
the ability to replicate data from DB2 EEE to other
systems for data warehousing or backup/recovery pur-
poses. As such, support of Capture in DB2 EEE is
required.

In this paper, we present a system called Cap-
tureEEE which enables DB2 DataPropagator and DB2
EEE to work together. CaptureEEE extends DB2
DataPropagator Capture by merging log entries from
recovery log files belonging to multiple database par-
titions in DB2 EEE and then reconstructing global
transactions by merging sub-transactions executed on
these partitions. Like DB2 DataPropagator, Cap-
tureEEE operates as an independent component. No
change needs to be made for DB2 DataPropagator Ap-
ply.

The rest of the paper is organized as follows. Sec-
tion 2 explains the principle of the DB2 DataPropaga-
tor Capture program. Section 3 introduces DB2 EEE,
including the partition nodes, partitioning of tables,
global transactions and partition recovery log files.
Section 4 presents CaptureEEE, the work of capturing
global transactions in DB2 EEE, a brief introduction
of the prototyping is given. Section 5 concludes the

paper.

2 DB2 DataPropagator Capture

The DB2 DataPropagator Capture program is a log
based replication solution. It scans the recovery log file
of a database sequentially and examines each recovery
log entry. A log entry is a data structure that describes

the action that was performed on an object within the
database. In a DB2 recovery log file, each log entry is
uniquely addressed by a log sequence number (LSN),
which is a relative byte address for the first byte of
the log entry. A log entry consists of one common
log entry header and a record. The common log en-
try header contains information detailing the log entry
and transaction information, such as a unique trans-
action identifier (TID). All log entries written by a
single transaction contain the same transaction iden-
tifier. The transaction identifier ties together all log
entries that belong to one single transaction.

A TID is stored in each data manager (DM) and
transaction manager (TM) log entry. A transaction
identifier for a log entry that updates, inserts, or
deletes data is associated with a DM log entry. A
transaction identifier for a log entry that commits or
aborts a transaction is associated with a TM log entry.
The end of a transaction is signaled with a Commit or
Abort log entry, but the beginning of a transaction
does not necessarily write a specific log entry, such as
BeginOfTransaction.

2.1 Capturing Transactions

Since the log file of a database and its log entries pro-
vide information about database activities that hap-
pened in the past, complete transactions may be ex-
tracted from the log file. In particular, the Capture
program extracts transactions by scanning the recov-
ery log file of a database for specific log entries (e.g.,
log entries that belong to tables that are registered as
replication sources within the database) and extracts
essential information from the recovery log file.

Capture builds a transaction in memory, until the
Capture program sees a Commit log entry for this
transaction. The Capture program does not necessar-
ily commit the transaction immediately to the staging
tables. The commitment to the staging tables happens
after a specified interval has elapsed, and this interval
is referred to as a commit interval. Records describing
the changes of each transaction within the memory of
the Capture program are inserted into the staging ta-
bles. Two tables are used to record the transactions
captured in the staging area: a UOW (Unit Of Work)
table for keeping the transaction information, and a
CD (Changing Data) table for keeping each change
made by a certain transaction. By joining the UOW
table with CD table, the Apply program is able to ap-
ply the changes made by the captured transactions to
target data.

2.2 Restart Logic

The term warm start refers to the restart of a program,
such as the Capture program, with the warm start op-
tion. The warm start option allows the Capture pro-
gram to begin from where the Capture program had

stopped at its last termination. Thus, instead of read-
ing the source recovery log file from the beginning, the
Capture program continues reading the recovery log
file from a previously saved position. In particular,
during a warm start the Capture program continues
reading the log file from a certain position, which has
been stored during the last run of the Capture pro-
gram.

When a transaction is performing some processing,
the transactions is said to be inflight. When a com-
mit or abort operation is received for a transaction,
the transaction is committed or aborted, respectively,
and is no longer inflight. If a commit operation of a
transaction happens after a change data (CD) synch
point is reached, the transaction is still treated as in-
flight. The minimum inflight LSN (MinInflightLSN)
of all inflight transactions is stored at the CD synch
point. This LSN ensures that the Capture program
does not miss any log entries. If a warm start is re-
quired after the CD synch point, a program recognizes
that it should start reading log entries for the trans-
action started with the MinInflight LSN.

Additionally, at the CD synch point, a max commit
LSN (MazCommitLSN) is stored. MaxCommitLSN is
the LSN of the commit operation of the last transac-
tion that has been processed into staging tables. This
LSN ensures that the Capture program does not cap-
ture log entries from a single transaction more than
once.

The term cold start refers to a situation in which
the Capture program starts from scratch. All replicas
are re-initialized and the Capture program reads the
recovery log file of the database from the current end
of the log. DB2 provides a log read application pro-
gramming interface (API) to retrieve log entries from a
recovery log file. The log read API returns log entries
for tables that have been created with the data cap-
ture changes attribute. By calling the log read API,
the Capture program retrieves log entries that are rel-
evant for data replication. In this manner, overhead is
minimized.

Restart is a feature within the Capture program
that ensures that replication of changes can be re-
sumed after a restart. The restart of the Capture
program refers to a situation in which the Capture
program has been manually stopped by the user or
stopped without warning due to, for example, a hard-
ware or software failure.

3 DB2 EEE

DB2 EEE extends a database manager to a partitioned
database system. A partitioned database system is
the collection of all database partition servers (nodes),
each has a database manager and a collection of data
and system resources. In a partitioned database sys-
tem, multiple database partition nodes can be assigned
to a machine (or to multiple machines), and each

database partition node houses a portion of the entire
database. This portion of the database is known as a
database partition. The fact that databases are parti-
tioned across database partition nodes is transparent
to users and applications.

3.1 Node Configuration

DB2 EEE can be configured to execute on Massively
Parallel Processing (MPP) shared-nothing hardware
architecture, in which machines do not compete for re-
sources. Each machine has exclusive access to its own
disks and memory, and the database partition nodes
that run on the machines communicate with each other
through the use of messages. Below is an example of a
configuration with three physical partition nodes. The
first column shows the node number, the second the
machine name, and the third the communication port
of on that machine.

Example 1 A configuration with physical partition
nodes

1 dolphin O
2 sushi 3
3 tide 1

Another configuration is running multiple logical
partition nodes, in which more than one database par-
tition server runs on a machine. This configuration
is useful when the system runs queries on a machine
that has symmetric multiprocessor (SMP) architec-
ture. Below is an example of a configuration with three
logical partition nodes.

Example 2 A configuration with logical partition
nodes

1 dolphin O
2 dolphin 1
3 dolphin 2

It is also possible to have a mixed configuration of
physical and logical partition nodes.

3.2 Table Partitioning

Once we defined the node configuration, we can cre-
ate several nodegroups which are named subsets of the
partition nodes in the configuration. Each nodegroup
is defined within database partitions that belong to
the same database. For example, we can create the
following three nodegroups based on the configuration
in either Example 1 or Example 2.

Example 3 Defining nodegroups

Create nodegroup nl on nodes(1);
Create nodegroup n23 on nodes(2,3);
Create nodegroup ni123 on nodes(1,2,3);

After nodegroups have been created, we can define
some tablespaces for a database. For example, we cre-
ate the following three table spaces.

Example 4 Defining tablespaces

Create tablespace sl in nodegroup nil
managed by system using(’nl’);

Create tablespace s23 in nodegroup n23
managed by system using(’n23’);

Create tablespace s123 in nodegroup n123
managed by system using(’n123’);

Now we can define tables for the database. For
instance, we can define the following table ¢; in ta-
blespace s123.

Example 5 A table definition

Create table t1(coll int,
col2 varchar(50),
col3 time,
primary key(coll))
in s123 partitioning key(coll);

A table exists in a tablespace. The value of the
partitioning key is used to map a row to a node by a
hash function. In Example 5, the value of colf maps a
row to a node defined in nodegroup n123.

3.3 Global Transactions vs Local Transactions

In DB2 EEE, a transaction may update more than one
partition node. A coordinator node of a transaction is
the partition node where a transaction is issued; other
partition nodes involved in this transaction are called
subordinator nodes. A local transaction makes update
only on the coordinator node. All other transactions
are called global transactions. So there are two types
of global transactions in DB2 EEE:

(1) A transaction which updates more than one node,
thus has more sub-transactions;

(2) A transaction which makes update on only one
node which is not the coordinator node.

In DB2 EEE, two types of transaction identifiers
are used: a local transaction identifier (TID) which is
the same as the TID in DB2 DataPropagator, and a
global transaction identifier (GTID) for global trans-
actions. GTID is associated with all TM log entries
for global transaction management. All TM log en-
tries for a same global transaction contain the same
GTID value. TID is node-local. A subtransaction of
a global transaction also uses TID in its DM and TM
log entries.

DB2 EEE uses the presumed commit protocol
(PrC) [1], a derivative of the two-phase commit proto-
col (2PC), to coordinate the commit of a global trans-
action.

In the following, we give an example of two global
transactions.

Example 6 Global transactions

Two global transactions GT' X, and GT X> are de-
fined. Both inserting some tuples into table ¢; defined
in Example 5. Suppose that values 4 and 88 will be
mapped to node 1, values 2 and 888 to node 2, and
value 1 to node 3. GTX; is issued on node 1 while
GT X, on node 2. Also suppose the order of execu-
tion is GT X1.Insert, GT Xs.Insert, GT X5.Commit,
GTX,.Commit.

// Node 1 (GTX1)

Insert into t1 values
(4,’gx101’° ,current time),
(2,7gx102° ,current time),
(1,’gx1@3’ ,current time)

Commit; // (4)

/7 (1)

// Node 2 (GTX2)

Insert into t1 values
(88,’gx2@1’ ,current time),
(888, ’gx2@2° ,current time)

Commit; // (3)

/7 (2)

3.4 Log Files in DB2 EEE

A DB2 EEE database includes multiple database par-
titions, each with a recovery log file. The recovery log
file structure on each partition node is same as in a
non-partitioned DB2 database. However, extra TM
log entries are created for global transaction menage-
ment. These include prepare, coordCommit, and subor-
dCommit. Like local transactions, DB2 EEE does not
keep BeginOfTransaction entry for global transactions
in recovery log files. For the second type of global
transactions, DB2 EEE only generates prepare and
subordCommit log entries, no coordCommit is gen-
erated in a recovery log file.

In the following, we give an example of DB2 EEE
database recovery log files.

Example 7 DB2 EEFE database recovery log files

Below are log entries generated from the execution
of the two global transactions defined in Example 6.
STX;; stands for a subtransaction of GT'X; running
on node j.

// Node 1
STX11-Insert
STX21-Insert
STX21-Prepare
STX21-SubordCommit
GTX1-CoordCommit

// Node 2

STX12-Insert
STX22-Insert
GTX2-CoordCommit
STX12- Prepare
STX12-SubordCommit

// Node 3
STX13-Insert
STX13-Prepare
STX13-SubordCommit

4 CaptureEEE

In the DB2 DataProppagator Capture, only local
transactions are captured from a single database re-
covery log file. So there is no problem of ordering,
the total ordering of log entries can be easily obtained
by reading the log entries from the single recovery log
file sequentially. The earlier the commit log entry of
a transaction is scanned, the earlier this transaction is
captured. In DB2 EEE, however, we need to deal with
multiple recovery log files. The ordering of the log en-
try reading and processing has to be worked out first.
Regardless it is a local transaction or a global transac-
tion, the transaction executed first must be captured
and written to the staging table first.

In DB2 EEE, timestamps are generated using Lam-
port clock [13] which supports partial ordering among
the events happened in DB2 EEE. The partial order-
ing together with the PrC version of two-phase commit
logic deployed in DB2 EEE are crucial for capturing
global transactions in right order.

The architecture of CaptureEEE is shown in Fig-
ure 1. CaptureEEE is composed of the following
components: the log reader, the transaction builder,
the transaction merger, and the staging table inserter.
The log reader retrieves the log entries from multi-
ple database recovery log files. The output of the
log reader is a single log entry sequence which con-
tains log entries from multiple log files. So the role of
log reader is to merge the multiple recovery log files
and construct a single logical recovery log file. From
the output of the log reader, the transaction builder
builds local transactions or subtransactions of a global
transaction and stores them into a local transaction
memory structure for use by the transaction merger.
The transaction merger generates global transactions
in the global transaction structure by mapping sub-
transactions in the local transaction memory to global
transaction memory. The staging table inserter uses
staging tables to store data of the captured local and
global transactions from the local and global transac-
tion memories, while restart table stores restart points
for each one of multiple recovery log files.

In the following, we discuss each component of the
architecture. In particular, we present the algorithm
for merging the log entries in detail. The implementa-

DB2 EEE

Partition 2

Partition 1 Partition n

[| 7
i | 7
i | 7
CaptureEEE T~ .— Resart Tble
Log Restart m
Reader Information Hjjjj
Z Staging Tables
Staging m
E Table
D Inserter H—H—H
Local Transaction | Transaction Global
Transactions Builder Merger Transactions

Figure 1: The Architecture of CaptureEEE

tion of the prototype is also discussed.

4.1 Merging Log Entries

Two approaches to log entry merging are available.
The first approach uses a single log reader to scan all
partition recovery log files and generate a single log en-
try sequence. The second approach uses a log reader
for each partition node. In the second approach, all
log readers can work simultaneously which is good,
but additional synchronization effort is required on the
simultaneously accessed recovery log files and this syn-
chronization is complicated. In CaptureEEE, the first
approach is applied.

As DB2 EEE can be configured to execute on an
MPP hardware architecture, no central clock is avail-
able to support the ordering of events. In DB2 EEE,
Lamport clock is used to generate a timestamp which
provides a partial ordering to events. The local clock of
each database partition node gets synchronized when
the partition node receives a message from other par-
tition nodes. This is also used in implementing the
PrC version of the two-phase commit protocol to pro-
vide the right timestamps for both coordinator nodes
and subordinator nodes. For the TM log entries pre-
pare, coordCommit, and subordCommit of any global
transaction ¢, the following is always true (ts stands
for timestamp).

ts(t.prepare) < ts(t.coordCommit)
< ts(t.subordCommit)

Using the partial ordering and the two-phase com-
mit logic, the log entry sequence can be generated such
that the timestamps appearing in log entries of the se-
quence are always in ascending order. A log entry
sequence for the multiple recovery log files shown in
Example 7 is given as follows.

Example 8 A log entry sequence of the multiple re-
covery log files shown in Example 7

STX11-Insert
STX21-Insert
STX12-Insert
STX22-Insert
STX13-Insert
STX21-Prepare
GTX2-CoordCommit
STX21-SubordCommit
STX12-Prepare
STX13-Prepare
GTX1-CoordCommit
STX12-SubordCommit
STX13-SubordCommit

The log reader uses the timestamps associated with
the TM log entries in multiple recovery log files to
generate the single log entry sequence. The log reader
reads the log entries from the partition node with the
current minimum timestamp of all unprocessed TM
log entries. The set of partition nodes participated in
the DB2 EEE source database defined in the configu-
ration forms the node list of the log reader. The log
reader needs to establish connection to all partition
nodes in the node list first. Then switch the connec-
tion to the node if the partition node owns the mini-
mum unprocessed timestamp. Once a partition node
is connected, the log reader calls the log read API to
retrieve the log entries of that node.

Before we give the algorithm for log merging, we
first look at where the log reader starts and stops.

4.1.1 Restart Logic

In CaptureEEE, there are multiple restart positions
as there are multiple recovery log files. We choose to
store one MinInflight LSN for each partition node, but
a single MaxCommitTimestamp is used for all nodes.
This provides a good balance between the needed time
for updating the restart table and the time necessary
for the restart. In DB2 EEE, LSNs cannot be used
to determine the ordering of the log entries belonging
to different recovery log files. Therefore, a single Min-
Inflight Timestamp is required. However, it is compli-
cated to use a single MinInflight Timestamp to replace
one MinInflight LSN for each partition node.

For a warmstart situation, the MinInflight LSN for
each partition node is retrieved from the restart table
as the start LSN for the partition node. For a coldstart
situation, current active LSN (of the last log entry of

a recovery log file) is set as the start LSN for each
partition node. The last unprocessed timestamp for
each partition node is set to 0 for both warmstart and
coldstart situations.

4.1.2 End Of Log

For Capture in DB2 DataPropagator, when it hits the
EOL (End Of Log), the log reader returns the EOL
code since there is no more log entries to read. How-
ever this is no longer the case in DB2 EEE since there
are multiple log files. In DB2 EEE, time difference may
exist among the local clocks of the partition nodes.
When the log reader hits the EOL of the recovery log
file of one partition node, it is possible that many log
entries in the recovery log files of other nodes have not
yet been read. However, it is also possible that the
next TM log entry to be written on the node with the
EOL reached by the log reader keeps the minimum un-
processed timestamp. Therefore, based on the partial
ordering implemented in timestamps associated with
the TM log entries, the log reader is unable to switch
to other nodes when the log reader hits the EOL of
the log file of one node.

Is the log reader able to continue the delivery of
more log entries to the single log entry sequence when
it hits the EOL of the log files of some partition nodes?
We analyze all possible situations between the parti-
tion nodes with EOL seen to the log reader and the
partition node with the current minimum unprocessed
timestamp, and come up with the following proposi-
tions.

Proposition 1 When the log reader hits EOL of any
partition node ny, the log reader can switch to the par-
tition node no which has the minimum unprocessed
timestamp if the unprocessed log entry with this mini-
mum timestamp 45 a commit.

Proposition 2 When the log reader hits EOL of any
partition node ny, the log reader can switch to the par-
tition node no which has the minimum unprocessed
timestamp if the unprocessed log entry with this min-
imum timestamp is a coordCommit, and either ny is
not in the participant list of the coordCommit.

Proposition 3 When the log reader hits EOL of any
partition node ny, the log reader can switch to the par-
tition mode ns which has the minimum unprocessed
timestamp if the unprocessed log entry with this mini-
mum timestamp S a prepare.

Proposition 4 When the log reader hits EOL of any
partition node ny, the log reader can switch to the par-
tition mode ns which has the minimum unprocessed
timestamp if the unprocessed log entry with this min-
imum timestamp is a subordCommit, and the sub-
transaction does not participate in a global transaction
which ny is the coordinator and the coordCommit has
not been processed by the log reader of ny.

We explain the above propositions.

If the log entry with the minimum unprocessed
timestamp is commit, this is a local transaction exe-
cuted independently from nq, therefore, the minimum
unprocessed timestamp has no conflict with the up-
coming log entries in np, including a TM log entry
with a timestamp less than the minimum unprocessed
timestamp of ns.

If the log entry with the minimum unprocessed
timestamp is prepare, it will cause no conflict. Since
prepare happens before coord Commit, it has no impact
on the commit of a transaction.

If the log entry with the minimum unprocessed
timestamp is coordCommit or subordCommit, the con-
ditions stated in the propositions are required to check
in case any conflict may cause with the upcoming log
entries in nq.

These propositions can be used to help the log
reader continue the delivery of more log entries in most
situations. However, the single log entry sequence gen-
erated this way may not satisfy the ascending times-
tamp property since the above propositions are based
on the following fact: the partial ordering is a sufficient
condition but not a necessary condition for the order-
ing of events. In CaptureEEE, however, the ascending
timestamp property is used for other purposes, e.g.,
recording the commit sequence of processed transac-
tions. As such, we solve the EOL problem by the direct
internal support from DB2 EEE engine. Whenever the
log read API hits the end of a recovery log file, the
log read API returns both the EOL return code and
a virtual timestamp to the caller. The virtual times-
tamp is the timestamp DB2 EEE would have written
at the time the EOL situation happened if a times-
tamp would have been needed.In addition, this virtual
timestamp is smart since it gets bigger when the log
reader hits the same EOL next time, this allows log
entries in other nodes go through.

4.1.3 Log Entry Merging Algorithm

We consider a list N = [ng,na,--,n;] of k partition
nodes. Each partition node has a recovery log file con-
taining a sequence of DM and TM log entries. A times-
tamp is associated with the following TM log entries:
commit for local transaction commit, prepare for sub-
ordinator prepare, coordCommit for coordinator com-
mit, and subordCommit for subordinator commit.

Let the variable cur Node point to the current par-
tition node. For each partition node n; (1 < i < k),
we define the following variables:
lastUnprocT'S: to keep the timestamp of the last un-
processed TM log entry;
logEntryOnHold: to point to the last unprocessed
TM log entry;
conn: to keep the handle for a connection to the par-
tition node.

In the following, we give the algorithm for log

entry merging. In the algorithm, the function
getCurNode() returns a pointer to the partition node
with min(n;.lastUnprocTS). In case there are more
than one node own min(n;.lastUnprocT' S), choose the
node with the smallest node number or choose one ran-
domly.

INPUT: A list N = [ni,na,---,ni] of k partition
nodes, each has a recovery log file.
OUTPUT: A merged single log entry sequence S in
the ascending order of timestamps.

Step 1 Initialization

Set NIL to curNode.

For each node n; (1 <i<k):

- Set 0 to n;.lastUnprocT S;

- Set NIL to n;.logEntryOnHold;

- Establish a connection to the node and assign the
handle to n;.conn.

Step 2 Switch to the right node
Call getCurNode() and set the returned value to
curNode, switch node connection to curNode.conn.

Step 3 Process the log entry on hold

If cur Node.logEntryOnHold is not NIL, append the
log entry pointed by curNode.logEntryOnHold to S
and set NIL to curNode.logEntryOnHold.

Step 4 Get next log entry
Read next log entry from curNode.conn.

Step 5 Handle EOL

If EOL is returned, process the EOL as follows:

- Set new EOL wirtual timestamp to
curNode.lastUnprocT'S;

- Call getCurNode() to find new curNode;

- If the new curNode hits EOL last time or
curNode = getCurNode(), return EOL (EOL of
the single logical log entry sequence is reached!);

- Set getCurNode() to curNode;

- Go to Step 3.

Step 6 Process TM log entries with new timestamp
If the returned log entry is a commit, a prepare, a
coordCommit, or a subordCommit TM log entry,
process the returned TM log entry as follows:

- Set the new timestamp associated with the log entry
to curNode.lastUnprocT'S ;

- Set the pointer to the log
cur Node.logEntryOnHold;

- Call getCurNode() to find new curNode;
- If curNode # getCurNode(), set getCurNode() to
curNode, switch node connection to curNode.conn;

- Go to Step 3.

entry to

Step 7 Process DM and other TM log entries
Append the log entry to S, and go to Step 4.

Below is an example which illustrates how the above
algorithm works for generating the single log entry se-
quence from the multiple recovery log files in Exam-
ple 7.

Example 9 Log entry sequence generated from the
multiple partition log files in Example 7 using the al-
gorithm

STX11-Insert

STX21-Insert

STX21-Prepare (hold)
STX12-Insert

STX22-Insert
GTX2-CoordCommit (hold)
STX13-Insert

STX13-Prepare (hold)
STX21-Prepare (delivery)
STX21-SubordCommit (hold)
GTX2-CoordCommit (delivery)
STX12-Prepare (hold)
STX31-SubordCommit (delivery)
GTX1-CoordCommit (hold)
STX12-Prepare (delivery)
STX12-SubordCommit (hold)
STX13-Prepare (delivery)
STX13-SubordCommit (hold)
GTX1-CoordCommit (delivery)
STX12-SubordCommit (delivery)
STX13-SubordCommit (delivery)

The algorithm scans each partition recovery log file
once. It checks at the TM log entry for commit, pre-
pare, coordCommit, or subordCommit. If the times-
tamp associated in the TM log entry is no longer the
minimum unprocessed timestamp, the log entry is on
hold and the log reader switches to the node which has
the current minimum unprocessed timestamp. The
unprocessed log entry on hold is delivered first, if any.

4.2 Building and Merging Transactions

From the single log entry sequence generated by the log
reader, the transaction builder and merger are able to
build both local and global transactions by processing
the log entries from the single log entry sequence. The
transaction builder takes care of all DM log entries
and all TM log entries for local transactions, while the
transaction merger takes care of all TM log entries for
global transactions.

4.2.1 Building Local Transactions and Sub-
transactions

The transaction builder has the same logic as the Cap-
ture program of DB2 DataPropagator. Its role is to
capture each local transaction as well as each subtrans-
action belonging to a global transaction from the single
log entry sequence returned by the log reader. For each

DM log entry, the transaction builder checks the TID
of that log entry. The TID is used to identify both a
local transaction and a subtransaction belonging to a
global transaction. If the transaction with this TID
is not in the local transaction memory, a new entry
needs to be created for the transaction with the TID.
The DM log entry is always appended to the end of the
transaction. All log entries of a local transaction or a
subtransaction comes from the same physical recovery
log file. For a Commit TM log entry, the transaction
builder knows that a local transaction has been cap-
tured and this transaction is ready in the local trans-
action memory for inserting to the staging tables at
the next CD synch point.

For an Abort TM log entry, the transaction builder
clear the local transaction in the local transaction
memory. The transaction did not make any changes
to the source database since the DB2 had performed a
rollback to undo all updates made by this transaction.

4.2.2 Merging Subtransactions

While the TID is used to build a local transaction or
a subtransaction of a global transaction, the GTID is
used to merge subtransactions with the same GTID
to a global transaction. A GTID is only included in
the TM log entries for global transaction management,
i.e., the prepare, coordCommit, and subordCommit
log entries.

The transaction merger works on the set of sub-
transactions that is created by the transaction builder.
By the time a prepare log entry for global transactions
is processed, all the DM log entries of the subtransac-
tion on the subordinator node have already been pro-
cessed by the transaction builder and put into the local
transaction memory.

The main task of the transaction merger is to pro-
cess three types of TM log entries for global transac-
tions:

e Prepare

For a prepare log entry, the transaction merger
checks the GTID of that log entry. If the global
transaction with this GTID has not been created
in the global transaction memory, a new entry is
created for the global transaction with the GTID.
The transaction merger also checks the TID as-
sociated with the prepare log entry and maps
the subtransaction identified by TID in the lo-
cal memory to the global transaction identified
by GTID in the global transaction memory.

o CoordCommit
For a CoordCommit log entry, the transaction
merger takes both GTID and TID from this log
entry and maps the subtransaction (if any) iden-
tified by the TID to the global transaction identi-
fied by GTID. To this point, we know that all the

subtransactions of the global transaction identi-
fied by GTID have been captured and mappings
from all subtransactions to the global transaction
have been done. The global transaction is ready
for publishing to staging tables.

o SubordCommit

If more than one subtransaction are involved in
a global transaction, the transaction merger does
nothing with a subordCommit log entry. A subord-
Commit log entry is useful for a global transaction
which involve only one subtransaction on a subor-
dinator node (type 2 global transaction). In this
case, this global transaction is processed as a local
transaction.

4.3 Inserting to Staging Tables

At each CD synch point, the staging table inserter
outputs the captured transactions into staging tables
as well as the restart information into restart table.

Once a local transaction is captured in the trans-
action builder or a global transaction is captured
in transaction merger, the information (e.g., commit
timestamp, transaction identifier, transaction type) of
the transaction is appended in a queue ready for use
by the staging table inserter. For a local transaction,
the task of insertion is the same as the Capture pro-
gram. For a global transaction, log entries of all its
subtransactions need to be inserted into staging tables
as a single transaction. The information of a global
transaction (including GTID) is recorded in UOW ta-
ble, while log entries of all subtransactions are inserted
into the CD table associated with the GTID.

For restart information, as introduced in Section
4.1.1, CaptureEEE choose to store one MinInflight LSN
for each node, but a single MaxCommitTimestamp is
used for all partition nodes.

The output of the staging table inserter matches
that of the Capture program to ensure compatibility
to the existing Apply program. For example, the struc-
ture of the staging tables remains unchanged.

4.4 Implementation of the Prototype

A prototype of CaptureEEE has been implemented on
DB2 UDB V8. This prototype is implemented as an
extension of the Capture program of DB2 DataProp-
agator. Therefore, CaptureEEE behaves the same as
Capture, e.g., the single logical log entry sequence gen-
erated by the log reader of CaptureEEE emulates the
single physical log file in the Capture program.

The components of CaptureEEE are implemented
as independent threads. The log reader thread pro-
duces single log entry sequence independently from
the transaction builder/merger thread which con-
sumes this log entry sequence. The transaction
builder/merger thread produces local/global trans-
actions in local/global transaction memory indepen-

dently from the staging table inserter which takes these
transactions as input and outputs them into staging
tables. The context management provided in DB2 is
used to switch the connection from one node to an-
other.

Preliminary performance analysis has been done on
this prototype of CaptureEEE. It turns out that for a
logical node configuration, there is only minor perfor-
mance drop. However, for a physical node configura-
tion, the number of log entries processed per second
drops around 20% for adding a new physical partition
node. This is caused by the overhead to switch nodes
by the log reader.

5 Conclusion

With the increasing deployment of partitioned
database systems like DB2 EEE in OLTP environ-
ments, there is a need to replicate the operational data
from these partitioned systems to other systems for the
purposes, say data warehousing or backup/recovery.
In this paper, we addressed issues of data replication
in partitioned database systems. We introduced Cap-
tureEEE which is an extension of the Capture pro-
gram of DB2 DataPropagator. This extension allows
the transactions executed in DB2 EEE to be captured
and replicated. The architecture and the components
of CaptureEEE were presented. In particular, the al-
gorithm for merging the log entries was discussed in
detail. In CaptureEEE, the partial ordering in times-
tamps generated using Lamport clock and the PrC
version of the two-phase commit protocol were used
to guide the merging of log entries and the merging of
subtransactions into global transactions.

In the future, the multiple log reader approach
will be investigated to catch up with the performance
penalty caused by the single log reader approach.

References

[1] Y. Al-Houmaily, P. Chrysanthis, and S. Levitan.
An argument in favour of presumed commit pro-
tocol. In Proceedings of the International Confer-
ence on Data Engineering, pages 255—265, 1997.

2] Y. Amir and C. Tutu. From total order to
database replication. In Proceedings of the In-

ternational Conference on Distributed Computing
Systems, pages 494—, 2002.

[3] T. A. Anderson, Y. Breitbart, H. F. Forth, and
A. Wool. Replication, consistency, and practical-

ity: Are these mutually exclusive? In Proceedings
of the SIGMOD Conference, 1998.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison Wesley, Massachusetts, 1987.

[5]

Y. Breitbart, R. Komondoor, R. Rastogi, S. Se-
shadri, and A. Silberschatz. Update propagation
protocols for replicated databases. In Proceedings
of the SIGMOD Conference, 1999.

P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. De-
ferred updates and data placement in distributed
databases. In Proceedings of the International
Conference on Very Large Data Bases, 1996.

Oracle Corporation. Oracle8i(tm) Advanced
Replication, 2000.

J. Gray, P. Helland, P. O’Neil, and D. Shasha.
The dangers of replication and a solution. In Pro-
ceedings of the SIGMOD Conference, 1996.

IBM. DB2(tm) Universal Database Enterprise-
Ezxtended Edition: Quick Beginnings V7, 2000.

IBM. DB2(tm) Universal Database: Replication
Guide and Reference V7, 2000.

B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-r, a new way to implement
database replication. In Proceedings of the Inter-
national Conference on Very Large Data Bases,

pages 134-143, 2000.

B. Kemme and G. Alonso. A new approach to de-
veloping and implementing eager database repli-
cation protocols. TODS, 25(3):333-379, 2000.

L. Lamport. Time, clocks, and the ordering of

events in a distributed system. Communications
of the ACM, 21(7), 1978.

E. Pacitti, P. Minet, and E. Simon. Fast al-
gorithms for replica consistency in lazy master
replicated databases. In Proceedings of the Inter-

national Conference on Very Large Data Bases,
1999.

